Closing Thurs:
6.5

6.5 Loans

A loan is an ordinary annuity from the bank's perspective; the bank invests a large present value in your home or car or education, and then withdraws payments, with interest, from you. We know this formula!

$$
P=R \frac{1-(1+i)^{-n}}{i}
$$

$P=$ starting loan balance
$R=$ loan payment
$r=$ yearly rate,
$\mathrm{m}=$ compoundings/payments per year
$i=r / m=$ rate at each compounding
$n=m t=$ total payments

The process of repaying the principal and interest in equal payments is called amortization.

Example:

Sarah purchases a $\$ 350,000$ home with a down payment of \$75,000 and a mortgage loan for the rest at 5\%, compounded monthly amortized over 30 years.
(a) What is the starting loan balance?
(b) What are the monthly payments?
(c) What is the total amount Sarah pays for the house? (i.e. total over the "life of the loan")
(d) How much interest does she pay?

Don't need to write this down

Amortization (Payment) Schedule for Sarah's example:

$$
i=0.05 / 12=0.004166 \ldots
$$

For each monthly statement, the bank computes interest by multiplying i times the unpaid balance. That part of your payments is interest, the rest is subtracted from the principal

Month	Payment	Interest	Principal	Unpaid Balance
0				\$275,000.00
1	\$1,476.26	\$1,145.83	\$330.43	\$274,669.57
2	\$1,476.26	\$1,144.46	\$331.80	\$274,337.77
3	\$1,476.26	\$1,143.07	\$333.19	\$274,004.58
4	\$1,476.26	\$1,141.69	\$334.57	\$273,670.01
5	\$1,476.26	\$1,140.29	\$335.97	\$273,334.04
6	\$1,476.26	\$1,138.89	\$337.37	\$272,996.67
7	\$1,476.26	\$1,137.49	\$338.77	\$272,657.90

Chapter 6 Summary

1. Are there regular payments?
(a) NO: it's a LUMP SUM problem.
(b) YES: it's an ANNUITY problem.

2(a) For LUMP SUM, does it say:
(i) "simple interest"?
(ii) "compound continuously"?
(iii) "compounded m times a year"?

2(b) For ANNUITIES,
(i) payments at BEGINNING or END?
(ii) balance GROWING or SHRINKING?

Special notes on Annuities:

1. First compute
$i=r / m=$ rate used at each period.
$n=m t=$ total number of payments
2. Note:
$R \cdot n=$ total amount paid.
For $F V$ questions
Total interest $=F-R \cdot n$
For PV questions
Total interest $=R \cdot n-P$
3. Loans are present value, ordinary annuities. If there is a down payment on a loan, then
$P=$ original value - down payment
