Closing Thurs: 6.5

<u>6.5 Loans</u>

A <u>loan</u> is an **ordinary** annuity from the bank's perspective; the bank invests a large **present value** in your home or car or education, and then withdraws payments, with interest, from you. We know this formula!

$$P = R \frac{1 - (1 + i)^{-n}}{i}$$

P = starting loan balance

R = loan payment

r = yearly rate,

m = compoundings/payments per year

i = *r*/*m* = rate at each compounding

n = *mt* = total payments

The process of repaying the principal and interest in equal payments is called <u>amortization</u>.

Example:

Sarah purchases a \$350,000 home with a down payment of \$75,000 and a mortgage loan for the rest at 5%, compounded monthly amortized over 30 years.

- (a) What is the starting loan balance?
- (b) What are the monthly payments?
- (c) What is the total amount Sarah pays for the house? (*i.e.* total over the "life of the loan")
- (d) How much interest does she pay?

Don't need to write this down

Amortization (Payment) Schedule for Sarah's example:

i = 0.05/12 = 0.004166...

For each monthly statement, the bank computes interest by multiplying i times the unpaid balance. That part of your payments is interest, the rest is subtracted from the principal

Month	Payment	Interest	Principal	Unpaid Balance
0				\$275,000.00
1	\$1,476.26	\$1 <i>,</i> 145.83	\$330.43	\$274,669.57
2	\$1,476.26	\$1,144.46	\$331.80	\$274,337.77
3	\$1,476.26	\$1,143.07	\$333.19	\$274,004.58
4	\$1,476.26	\$1,141.69	\$334.57	\$273,670.01
5	\$1,476.26	\$1,140.29	\$335.97	\$273,334.04
6	\$1,476.26	\$1,138.89	\$337.37	\$272,996.67
7	\$1,476.26	\$1,137.49	\$338.77	\$272,657.90

Chapter 6 Summary

Are there regular payments?
 (a) NO: it's a LUMP SUM problem.
 (b) YES: it's an ANNUITY problem.

2(a) For LUMP SUM, does it say:

- (i) ``simple interest"?
- (ii) ``compound continuously"?
- (iii) ``compounded m times a year"?

2(b) For ANNUITIES,(i) payments at BEGINNING or END?(ii) balance GROWING or SHRINKING?

Special notes on Annuities:
1. First compute
i = r/m = rate used at each period.
n = mt = total number of payments

2. Note: $R \cdot n = \text{total amount paid.}$ For FV questions $Total interest = F - R \cdot n$ For PV questions $Total interest = R \cdot n - P$

 Loans are present value, ordinary annuities. If there is a down payment on a loan, then

P = original value – down payment